VI CONGRESO **SENFE** BILBAO

organiza:

RESUMEN COMUNICACIÓN

3-4 OCTUBRE 2019 • •

TÍTULO

LOCALIZACIÓN DEL FOCO EPILÉPTICO CEREBRAL MEDIANTE EL PROGRAMA HFODET. 3.0 ESTUDIO DE LA CONFCTIVIDAD DEL LÓBULO FRONTAL.

INTRODUCCIÓN

El instrumento más importante para el estudio de la enfermedad epiléptica es sin duda la EEG y en concreto los estudios SEEP con electrodos profundos

OBJETIVOS

El objetivo del trabajo es determinar la región epileptogénica mediante el análisis HFO Fast Ripple preictal y estudiar la actividad cerebral de la red frontal en un modelo de paciente epiléptico del Programa Cirugía de Epilepsia sometido a monitorización SEEG. con el Software HFODet®.

METODOLOGÍA

Pacientes monitorizados SEEG n5. Epilepsia temporales 3 y Extratemporales 2. Análisis de Actividad cerebral HFODet[®]:8-12 dias. TR por crisis 600-2800 s. IFrecuencias estudiadas: Beta, Ripples y Fast Ripples y Energía total. Análisis Causalidad y Coherencia para los estudios de conectividad local. Estudio de RM DTI 64D con postprocesado AMIRA 6.7.. Modelo de conectividad: Circuito Frontobasal/Insular-a46-AMS. Regiones estudiadas: Fronto Basal premotor (Ctex FBpM), a46 AMS.

RESULTADOS

Actividad prelctal Fast Ripples en todos los casos (3) la nivel de Hipocampo anterior cortex frontorbitario e insula en epilepsia temporal. Mayor actividad correspondió al periodo postcrítico estableciendo una relación entre el periodo de desconexión clínico postictal y la actividad Fast Ripples.La Conectividad frontal Coherencia/Causalidad mostró, en el periodo postcrítico, una importante actividad Fast Ripples en a46. con sincronización beta en AMS y frontobasal. Los circuitos expresaban una actividad bidireccional a46-aMS-CtxFBM.

CONCLUSIONES

La actividad Fast Ripples es característica del foco epiléptico y puede ser detectada prelctalmente mediante el HFODet®. Dicha actividad se extiende durante el periodo postcrítco a otras regiones del cerebro. Podemos estudiar dichas redes de conectividad y correlacionarlas con los estudios de RM-DTI.

BIBLIOGRAFÍA

VI CONGRESO SENFE BILBAO

3-4 OCTUBRE 2019

RESUMEN COMUNICACIÓN

Duffau H, Capelle L, Denvil D, Gatignol P, Sichez N, Lopes M, Sichez JP, van Effenterre R (2003). The role of dominant premotor cortex in language: A study using intraoperative functional mapping in awake patients. Neuroimage20:1903–1914.

Sato M, Tremblay P, Gracco VL (2009): A mediating role of the premotor cortex in phoneme segmentation. Brain Lang 111:1–7.

M. Bataller; A. Rosado; J. Guerrero; J. Espí.IspPAC: redes analógicas programables. Descripción y aplicaciones. Mundo Electrónico. 311, pp. 38 - 42. (España): 2000. ISSN 0300-3787 Tipo de producción: Artículo Tipo de soporte: Revista 39 Juan Francisco Guerrero Martínez.

Introducción a los Procesadores Digitales de Señal.(España): Dr. Moliner 40, 2000. ISBN 84-931188-5-0 Depósito legal: V-4527-2000 Tipo de producción: Libro.